From his Q&A with Matthew Taylor at the Princeton University Press blog:
Why this book now?--Marshal Zeringue
The last twenty years have seen an explosion in the number and types of investigators studying animal motion, in large part due to the greater number of tools that can visualize the motion of animals. High speed videography has gone digital. CT-scanners originally for use in hospitals can now see the shapes and insides of animals with better clarity than ever before. These shapes can now be printed using 3-D printing and then subjected to physically tests, for example to show that a shark’s scales can increase its fuel economy.
What is unexpected about this book?
Many concepts from animal motion have no analogy in the built world. For example, most of the things we ride around on are hard, like the stiff frame of a car or bicycle. However, a great number of animals, especially insects, have evolved crushable bodies that enable them to survive impacts with their surroundings. Bees for example are so rushed to obtain pollen that they collide with hundreds of thousands of plant stems and flowers in a lifetime. Their wings have origami-based crush zones. Their hinges are made of a material called resilin, that is more springy than the springiest human-made material, Zectron, the main component in the 25-cent super ball.
What makes you qualified to write this book?
My laboratory...[read on]